Halveringsmetoden kalles også midtpunktsmetoden og er en måte å finne nullpunkter til en kontinuerlig funksjon.
Fremgangsmåte
Skriv likningen på formen $f(x) = 0$.
Velg $a$ og $b$ slik at $f(a)$ og $f(b)$ har forskjellig fortegn, og $f(x)$ er kontinuerlig fra $a$ til $b$. Da sier skjæringssetningen at $f(x)$ har et nullpunkt mellom $a$ og $b$.
Finn $f(c)$ der $c = \frac{a + b}{2}$ ligger midt mellom $a$ og $b$.
To muligheter:
$f(a)$ og $f(c)$ har samme forskjellig fortegn: Sett $a = c$.
$f(b)$ og $f(c)$ har samme forskjellig fortegn: Sett $b = c$.