Når vi multipliserer en matrise med en skalar, multipliseres hvert element i matrisen med skalaren:
\textcolor{red}{k} \left( \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right) = \left( \begin{array}{cc} \textcolor{red}{k} a_{11} & \textcolor{red}{k} a_{12} & \cdots & \textcolor{red}{k} a_{1n} \\ \textcolor{red}{k} a_{21} & \textcolor{red}{k} a_{22} & \cdots & \textcolor{red}{k} a_{2n} \\ \vdots & \vdots & & \vdots \\ \textcolor{red}{k} a_{m1} & \textcolor{red}{k} a_{m2} & \cdots & \textcolor{red}{k} a_{mn} \end{array} \right)
+ Kort video
+ Eksempel 1
Multipliser hvert element i matrisen med skalaren:
\textcolor{red}{2} \left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right) = \left( \begin{array}{cc} \textcolor{red}{2} \cdot 1 & \textcolor{red}{2} \cdot 2 \\ \textcolor{red}{2} \cdot 3 & \textcolor{red}{2} \cdot 4 \end{array} \right) = \left( \begin{array}{cc} 2 & 4 \\ 6 & 8 \end{array} \right)
+ Eksempel 2
Multipliser hvert element i matrisen med skalaren.
\textcolor{red}{k} \left( \begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right) = \left( \begin{array}{cc} \textcolor{red}{k} & 2 \textcolor{red}{k} & 3 \textcolor{red}{k} \\ 4 \textcolor{red}{k} & 5 \textcolor{red}{k} & 6 \textcolor{red}{k} \end{array} \right)