Selv om vi kan bruke formelen for Laplace transformen:
$$F(s) = \mathcal{L}(f(t)) = \int_0^{\infty} e^{-st} f(t) \; dt$$er det ofte raskere og enklere å bruke tabeller:
Nr. | $f(\textcolor{blue}{t})= \mathcal{L}^{-1}(f(\textcolor{red}{s}))$ | $F(\textcolor{red}{s}) = \mathcal{L}(f(\textcolor{blue}{t}))$ | Gjelder | Utregning |
---|---|---|---|---|
1 | $1$ | $\frac{1}{\textcolor{red}{s}}$ | $\textcolor{red}{s} > 0$ | årsak |
2 | $\textcolor{blue}{t}$ | $\frac{1}{\textcolor{red}{s}^2}$ | $\textcolor{red}{s} > 0$ | årsak |
3 | $\textcolor{blue}{t}^n$ | $\frac{n!}{\textcolor{red}{s}^{n+1}}$ | $\textcolor{red}{s} > 0, \quad n = \{1,2,3,\cdots\}$ | |
4 | $e^{a\textcolor{blue}{t}}$ | $\frac{1}{\textcolor{red}{s}-a}$ | $\textcolor{red}{s} > a$ | årsak |
5 | $\textcolor{blue}{t} e^{a\textcolor{blue}{t}}$ | $\frac{1}{(\textcolor{red}{s}-a)^2}$ | $\textcolor{red}{s} > a$ | |
6 | $\textcolor{blue}{t}^n e^{a\textcolor{blue}{t}}$ | $\frac{n!}{(\textcolor{red}{s}-a)^{n+1}}$ | $\textcolor{red}{s} > a, \quad n = \{1,2,3,\cdots\}$ | |
7 | $\sin(b \textcolor{blue}{t})$ | $\frac{b}{\textcolor{red}{s}^2 + b^2}$ | $\textcolor{red}{s} > 0$ | årsak |
8 | $\cos(b \textcolor{blue}{t})$ | $\frac{\textcolor{red}{s}}{\textcolor{red}{s}^2 + b^2}$ | $\textcolor{red}{s} > 0$ | årsak |
9 | $e^{a\textcolor{blue}{t}}\sin(b \textcolor{blue}{t})$ | $\frac{b}{(\textcolor{red}{s}-a)^2 + b^2}$ | $\textcolor{red}{s} > a$ | |
10 | $e^{a\textcolor{blue}{t}}\cos(b \textcolor{blue}{t})$ | $\frac{\textcolor{red}{s}-a}{(\textcolor{red}{s}-a)^2 + b^2}$ | $\textcolor{red}{s} > a$ | |
11 | $u(\textcolor{blue}{t}-a)$ | $\frac{1}{\textcolor{red}{s}} e^{-a\textcolor{red}{s}}$ | $\textcolor{red}{s} > 0, \quad a \ge 0$ | årsak |
12 | $\delta(\textcolor{blue}{t})$ | $1$ | $\textcolor{red}{s} > 0$ | årsak |
13 | $\delta(\textcolor{blue}{t-a})$ | $e^{-a\textcolor{red}{s}}$ | $\textcolor{red}{s} > 0, \quad a \ge 0$ | årsak |
14 | $g(\textcolor{blue}{t}) + h(\textcolor{blue}{t})$ | $\mathcal{L}(g(\textcolor{blue}{t})) + \mathcal{L}(h(\textcolor{blue}{t}))$ | Laplace-transformasjonen er lineær | |
15 | $ag(\textcolor{blue}{t})$ | $a\mathcal{L}(g(\textcolor{blue}{t}))$ | $a$ er konstant | Laplace-transformasjonen er lineær |
16 | $h(t)u(t-a)$ | $e^{-as}\mathcal{L}(h(t+a))$ | $a > 0$ | årsak |
@ 2025 Kunnskapsgnist (lisensvilkår)