icon
Kunnskapsgnist
MatematikkFysikkOm oss

Laplace transform

Formelsamling

Publisert 20. november 2023
Redigert 20. januar 2025

USN
2
Matematikk 2 ved USN

Selv om vi kan bruke formelen for Laplace transformen:

$$F(s) = \mathcal{L}(f(t)) = \int_0^{\infty} e^{-st} f(t) \; dt$$

er det ofte raskere og enklere å bruke tabeller:

Nr.$f(\textcolor{blue}{t})= \mathcal{L}^{-1}(f(\textcolor{red}{s}))$$F(\textcolor{red}{s}) = \mathcal{L}(f(\textcolor{blue}{t}))$ GjelderUtregning
1$1$$\frac{1}{\textcolor{red}{s}}$$\textcolor{red}{s} > 0$årsak
2$\textcolor{blue}{t}$$\frac{1}{\textcolor{red}{s}^2}$$\textcolor{red}{s} > 0$årsak
3$\textcolor{blue}{t}^n$$\frac{n!}{\textcolor{red}{s}^{n+1}}$$\textcolor{red}{s} > 0, \quad n = \{1,2,3,\cdots\}$
4$e^{a\textcolor{blue}{t}}$$\frac{1}{\textcolor{red}{s}-a}$$\textcolor{red}{s} > a$årsak
5$\textcolor{blue}{t} e^{a\textcolor{blue}{t}}$$\frac{1}{(\textcolor{red}{s}-a)^2}$$\textcolor{red}{s} > a$
6$\textcolor{blue}{t}^n e^{a\textcolor{blue}{t}}$$\frac{n!}{(\textcolor{red}{s}-a)^{n+1}}$$\textcolor{red}{s} > a, \quad n = \{1,2,3,\cdots\}$
7$\sin(b \textcolor{blue}{t})$$\frac{b}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
8$\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
9$e^{a\textcolor{blue}{t}}\sin(b \textcolor{blue}{t})$$\frac{b}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
10$e^{a\textcolor{blue}{t}}\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}-a}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
11$u(\textcolor{blue}{t}-a)$$\frac{1}{\textcolor{red}{s}} e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
12$\delta(\textcolor{blue}{t})$$1$$\textcolor{red}{s} > 0$årsak
13$\delta(\textcolor{blue}{t-a})$$e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
14$g(\textcolor{blue}{t}) + h(\textcolor{blue}{t})$$\mathcal{L}(g(\textcolor{blue}{t})) + \mathcal{L}(h(\textcolor{blue}{t}))$Laplace-transformasjonen er lineær
15$ag(\textcolor{blue}{t})$$a\mathcal{L}(g(\textcolor{blue}{t}))$$a$ er konstantLaplace-transformasjonen er lineær
16$h(t)u(t-a)$$e^{-as}\mathcal{L}(h(t+a))$$a > 0$årsak
👍🏼 Ros og ris 👎🏼
🛠️ Meld om feil 🛠️
📩 Send ønske 📩

@ 2025 Kunnskapsgnist (lisensvilkår)

Symboler:
★ Utfordring ★
Dypdykk Dypdykk Dypdykk
☰ Metode ☰
Bonus Bonus Bonus
Video Video Video