Trigonometri: Eksakte verdier

Sinus, cosinus og tangens gir desimaltal mellom -1 og 1, men noen vinkler har eksakte verdier:

$x$ (grader)
$x$ (radianer)
$0^o$
$0$
$30^o$
$\frac{\pi}{6}$
$45^o$
$\frac{\pi}{4}$
$60^o$
$\frac{\pi}{3}$
$90^o$
$\frac{\pi}{2}$
$180^o$
$\pi$
sin $x$
cos $x$
tan $x$
$\frac{\textcolor{blue}{\sqrt{0}}}{2} = 0$
$\frac{\textcolor{blue}{\sqrt{4}}}{2} = 1$
$0$
$\frac{\textcolor{blue}{\sqrt{1}}}{2} = \frac{1}{2}$
$\frac{\textcolor{blue}{\sqrt{3}}}{2}$
$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
$\frac{\textcolor{blue}{\sqrt{2}}}{2}$
$\frac{\textcolor{blue}{\sqrt{2}}}{2}$
$1$
$\frac{\textcolor{blue}{\sqrt{3}}}{2}$
$\frac{\textcolor{blue}{\sqrt{1}}}{2} = \frac{1}{2}$
$\sqrt{3}$
$\frac{\textcolor{blue}{\sqrt{4}}}{2} = 1$
$\frac{\textcolor{blue}{\sqrt{0}}}{2} = 0$
$-$
0
1
0

Legg merke til:

  • $\tan x$ = $\frac{\sin x}{\cos x}$ og derfor får $\tan x$ et brudd når $\cos x$ = 0
  • cos 0 = 0 og sin 0 = 1
  • $\sqrt{0}, \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}$ er fordelt fint utover på $\sin x$ og $\cos x$.

+ Eksempel: Finn eksakt verdi til $\sin(120^o)$ og $\cos(120^o)$?

Alternativ 1: Først finner vi $120^o$ i enhetssirkelen. Vinkelen ligger i andre kvadrant siden den er større enn $90^o$ og mindre enn $180^o$:

Sinus-verdien (på den vertikale aksen) for $120^o$ er den samme som for $60^o$ siden $180^o - 60^o = 120^o$. Derfor kan vi bruke den eksakte verdien til $60^o$:

b = \sin(120^o) = \sin(60^o) = \frac{\sqrt{3}}{2}

Cosinus-verdien (på den horisontale aksen) for $120^o$ er den samme som for $60^o$, men med motsatt fortegn. Derfor kan vi bruke den eksakte verdien til $60^o$ og sette minus foran:

a = \cos(120^o) = -\cos(60^o) = -\frac{1}{2}

Og, vips, er vi ferdige!

Alternativ 2: Bruk formlene for summen av to vinkler:

\begin{aligned}
\textnormal{Formel: } & \sin(\textcolor{red}{u} + \textcolor{blue}{v}) = \sin(\textcolor{red}{u}) \cos(\textcolor{blue}{v}) + \sin(\textcolor{blue}{v}) \cos(\textcolor{red}{u}) \\
\sin(120^o) & = \sin(\textcolor{red}{90^o} + \textcolor{blue}{30^o}) \\
\Rightarrow \quad \sin(120^o) 
&= \sin(\textcolor{red}{90^o}) \cos(\textcolor{blue}{30^o}) + \sin(\textcolor{blue}{30^o}) \cos(\textcolor{red}{90^o}) \\
\Rightarrow \quad \sin(120^o) 
&= \textcolor{red}{1} \cdot \textcolor{blue}{\frac{\sqrt{3}}{2}} + \textcolor{blue}{\frac{1}{2}} \cdot \textcolor{red}{0} \\
\Rightarrow \quad \sin(120^o) 
&= \frac{\sqrt{3}}{2} 
\end{aligned}
\begin{aligned}
\textnormal{Formel: } & \cos(\textcolor{red}{u} + \textcolor{blue}{v}) = \cos(\textcolor{red}{u}) \cos(\textcolor{blue}{v}) - \sin(\textcolor{red}{u}) \sin(\textcolor{blue}{v}) \\
\cos(120^o) & = \cos(\textcolor{red}{90^o} + \textcolor{blue}{30^o}) \\
\Rightarrow \quad \cos(120^o) 
&= \cos(\textcolor{red}{90^o}) \cos(\textcolor{blue}{30^o}) + \sin(\textcolor{red}{90^o}) \sin(\textcolor{blue}{30^o}) \\
\Rightarrow \quad \sin(120^o) 
&= \textcolor{red}{0} \cdot \textcolor{blue}{\frac{\sqrt{3}}{2}} + \textcolor{red}{1} \cdot \textcolor{blue}{\frac{1}{2}} \\
\Rightarrow \quad \sin(120^o) 
&= - \frac{1}{2} 
\end{aligned}

+ Eksempel: Finn eksakt verdi til $\sin(240^o)$ og $\cos(240^o)$?

Alternativ 1: Først finner vi $240^o$ i enhetssirkelen. Den ligger i tredje kvadrant siden den er større enn $180^o$ og mindre enn $270^o$:

Sinus-verdien (på den vertikale aksen) for $120^o$ er den samme som for $60^o$, men med motsatt fortegn siden $180^o + 60^o = 240^o$. Derfor kan vi bruke den eksakte verdien til $60^o$ og sette minus foran:

b = \sin(240^o) = - \sin(60^o) = - \frac{\sqrt{3}}{2}

Cosinus-verdien (på den horisontale aksen) for $120^o$ er den samme som for $60^o$, men med motsatt fortegn. Derfor kan vi bruke den eksakte verdien til $60^o$ og sette minus foran:

a = \cos(240^o) = -\cos(60^o) = -\frac{1}{2}

Og, vips, er vi ferdige!

Alternativ 2: Bruk formlene for summen av to vinkler:

\begin{aligned}
\textnormal{Formel: } & \sin(\textcolor{red}{u} + \textcolor{blue}{v}) = \sin(\textcolor{red}{u}) \cos(\textcolor{blue}{v}) + \sin(\textcolor{blue}{v}) \cos(\textcolor{red}{u}) \\
\sin(240^o) & = \sin(\textcolor{red}{180^o} + \textcolor{blue}{60^o}) \\
\Rightarrow \quad \sin(240^o) 
&= \sin(\textcolor{red}{180^o}) \cos(\textcolor{blue}{60^o}) + \sin(\textcolor{blue}{60^o}) \cos(\textcolor{red}{180^o}) \\
\Rightarrow \quad \sin(240^o) 
&= \textcolor{red}{0} \cdot \textcolor{blue}{\frac{1}{2}} + \textcolor{blue}{\frac{\sqrt{3}}{2}} \cdot (\textcolor{red}{-1}) \\
\Rightarrow \quad \sin(240^o) 
&= -\frac{\sqrt{3}}{2} 
\end{aligned}
\begin{aligned}
\textnormal{Formel: } & \cos(\textcolor{red}{u} + \textcolor{blue}{v}) = \cos(\textcolor{red}{u}) \cos(\textcolor{blue}{v}) - \sin(\textcolor{red}{u}) \sin(\textcolor{blue}{v}) \\
\cos(240^o) & = \cos(\textcolor{red}{180^o} + \textcolor{blue}{60^o}) \\
\Rightarrow \quad \cos(240^o) 
&= \cos(\textcolor{red}{180^o}) \cos(\textcolor{blue}{60^o}) + \sin(\textcolor{red}{180^o}) \sin(\textcolor{blue}{60^o}) \\
\Rightarrow \quad \sin(240^o) 
&= (\textcolor{red}{-1}) \cdot \textcolor{blue}{\frac{1}{2}} + \textcolor{red}{0} \cdot \textcolor{blue}{\frac{\sqrt{3}}{2}} \\
\Rightarrow \quad \sin(240^o) 
&= - \frac{1}{2} 
\end{aligned}

← Matematikk

↓ Oppgaver

→ Identiteter