Laplace transformasjon: Tabell

Selv om vi kan bruke formelen for Laplace transformen:

F(s) = \mathcal{L}(f(t)) = \int_0^{\infty} e^{-st} f(t) \; dt

er det ofte raskere og enklere å bruke tabeller:

Nr.$f(\textcolor{blue}{t})= \mathcal{L}^{-1}(f(\textcolor{red}{s}))$$F(\textcolor{red}{s}) = \mathcal{L}(f(\textcolor{blue}{t}))$GjelderUtregning
1$1$$\frac{1}{\textcolor{red}{s}}$$\textcolor{red}{s} > 0$årsak
2$\textcolor{blue}{t}$$\frac{1}{\textcolor{red}{s}^2}$$\textcolor{red}{s} > 0$årsak
3$\textcolor{blue}{t}^n$$\frac{n!}{\textcolor{red}{s}^{n+1}}$$\textcolor{red}{s} > 0, \quad n = \{1,2,3,\cdots\}$
4$e^{a\textcolor{blue}{t}}$$\frac{1}{\textcolor{red}{s}-a}$$\textcolor{red}{s} > a$årsak
5$\textcolor{blue}{t} e^{a\textcolor{blue}{t}}$$\frac{1}{(\textcolor{red}{s}-a)^2}$$\textcolor{red}{s} > a$
6$\textcolor{blue}{t}^n e^{a\textcolor{blue}{t}}$$\frac{n!}{(\textcolor{red}{s}-a)^{n+1}}$$\textcolor{red}{s} > a, \quad n = \{1,2,3,\cdots\}$
7$\sin(b \textcolor{blue}{t})$$\frac{b}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
8$\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
9$e^{a\textcolor{blue}{t}}\sin(b \textcolor{blue}{t})$$\frac{b}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
10$e^{a\textcolor{blue}{t}}\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}-a}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
11$u(\textcolor{blue}{t}-a)$$\frac{1}{\textcolor{red}{s}} e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
12$\delta(\textcolor{blue}{t})$$1$$\textcolor{red}{s} > 0$årsak
13$\delta(\textcolor{blue}{t-a})$$e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
14$g(\textcolor{blue}{t}) + h(\textcolor{blue}{t})$$\mathcal{L}(g(\textcolor{blue}{t})) + \mathcal{L}(h(\textcolor{blue}{t}))$Laplace-transformasjonen er lineær
15$ag(\textcolor{blue}{t})$$a\mathcal{L}(g(\textcolor{blue}{t}))$$a$ er konstantLaplace-transformasjonen er lineær
16$h(t)u(t-a)$$e^{-as}\mathcal{L}(h(t+a))$$a > 0$årsak

+ Enkle eksempler

+ Kort video

Her er noen eksempler på bruk av tabellen:

\begin{array}{rclcrcl}
f(t) &=& 1 & \overset{\textnormal{Rad nr. 1}}\Longleftrightarrow & F(s) &=& \frac{1}{s}, \quad s > 0 \\
g(t) &=& t & \overset{\textnormal{Rad nr. 2}}\Longleftrightarrow & G(s) &=& \frac{1}{s^2}, \quad s > 0 \\
h(t) &=& e^{2t} & \overset{\textnormal{Rad nr. 5}}\Longleftrightarrow & H(s) &=& \frac{1}{s-2}, \quad s > 2
\end{array}

Merk at vi ofte bruker små bokstaver for den opprinnelige funksjonen og store bokstaver for den Laplace-transformerte funksjonen.

+ Eksempel 1: $f(t) = 5t – 7$

+ Kort video

Laplace-transformasjonen til $f(t) = 5t – 7$:

\begin{aligned}
F(s) & = \mathcal{L}\Big(f(t)\Big) \\
\textnormal{Setter inn funksjonen} \quad \Rightarrow \quad F(s) & = \mathcal{L}(5t - 7) \\
\textnormal{Bruker rad 14 i tabellen} \quad \Rightarrow \quad F(s) & = \mathcal{L}(5t) - \mathcal{L}(7) \\
\textnormal{Bruker rad 15 i tabellen} \quad \Rightarrow \quad F(s) & = 5\mathcal{L}(t) - 7\mathcal{L}(1)  \\
\textnormal{Bruker rad 1 og 2 i tabellen} \quad \Rightarrow \quad F(s) & = 5 \cdot \frac{1}{s^2} - 7 \cdot \frac{1}{s} \\
\textnormal{Forenkler uttrykket} \quad \Rightarrow \quad F(s) & = \frac{5}{s^2} - \frac{7}{s} \\
\Rightarrow \quad F(s) & = \frac{5 - 7s}{s^2} 
\end{aligned}

+ Eksempel 2: $f(t) = 5e^t + 2\sin(4t)$

+ Kort video

Laplace-transformasjonen til $f(t) = 5e^t + 2\sin(4t)$:

\begin{aligned}
F(s) & = \mathcal{L}\Big(f(t)\Big) \\
\textnormal{Setter inn funksjonen} \quad \Rightarrow \quad F(s) & = \mathcal{L}(5e^t + 2\sin(4t)) \\
\textnormal{Bruker rad 14 i tabellen} \quad \Rightarrow \quad F(s) & = \mathcal{L}(5e^t) + \mathcal{L}(2\sin(4t)) \\
\textnormal{Bruker rad 15 i tabellen} \quad \Rightarrow \quad F(s) & = 5\mathcal{L}(e^t) + 2\mathcal{L}(\sin(4t)) \\
\textnormal{Bruker rad 4 og 7 i tabellen}  \quad \Rightarrow \quad F(s) & = 5 \cdot \frac{1}{s-1} + 2 \cdot \frac{4}{s^2 + 4^2} \\ 
\textnormal{Forenkler uttrykket} \quad \Rightarrow \quad F(s) & = \frac{5}{s-1} + \frac{8}{s^2 + 16} 
\end{aligned}

+ Eksempel 3: $f(t) = (5 + 2\sin(3t))e^{4t}$

+ Kort video

Laplace-transformasjonen til $f(t) = (5 + 2\sin(3t))e^{4t}$:

\begin{aligned}
F(s) & = \mathcal{L}\Big(f(t)\Big) \\
\textnormal{Setter inn funksjonen} \quad \Rightarrow \quad F(s) & = \mathcal{L}\Big((5 + 2\sin(3t)) e^{4t} \Big) \\
\textnormal{Multipliserer } e^{4t} \textnormal{ inn i parentesen} \quad \Rightarrow \quad F(s) & = \mathcal{L}\Big(5 e^{4t} + 2 \sin(3t) e^{4t} \Big) \\
\textnormal{Bruker rad 14 i tabellen} \quad \Rightarrow \quad F(s) & = \mathcal{L}\Big(5 e^{4t}\Big) + \mathcal{L}\Big(2\sin(3t) e^{4t} \Big) \\
\textnormal{Bruker rad 15 i tabellen} \quad \Rightarrow \quad F(s) & = 5\mathcal{L}\Big(e^{4t}\Big) + 2\mathcal{L}\Big(\sin(3t) e^{4t}\Big) \\
\textnormal{Bruker rad 4 og 9 i tabellen} \quad \Rightarrow \quad F(s) & = 5 \cdot \frac{1}{s-4} + 2 \cdot \frac{3}{(s-4)^2 + 3^2} \\ 
\textnormal{Forenkler uttrykket} \quad \Rightarrow \quad F(s) & = \frac{5}{s-4} + \frac{6}{(s-4)^2 + 9} 
\end{aligned}

← Matematikk

↓ Oppgaver

→ Laplace og derivasjon