icon
Kunnskapsgnist
MatematikkFysikkOm oss

Algebra: Regneregler

Hva er logaritmer og logaritmeregler?

VGS

$a$-logaritmen av et tall $x$ er lik det tallet som $a$ må opphøyes i for å få $x$:

$$\log_{\textcolor{red}{a}}(\textcolor{blue}{x}) = \textcolor{green}{y} \qquad \Rightarrow \qquad \textcolor{red}{a}^{\textcolor{green}{y}} = \textcolor{blue}{x}$$

Noen nyttige logaritmeregler:

$$\begin{aligned} \textnormal{Fordi } \textcolor{red}{a}^{\textcolor{green}{0}} = \textcolor{blue}{1}: \qquad & \log_{\textcolor{red}{a}} (\textcolor{blue}{1}) = \textcolor{green}{0} \\ \textnormal{Fordi }\textcolor{red}{a}^{\textcolor{green}{1}} = \textcolor{blue}{a}: \qquad & \log_{\textcolor{red}{a}} (\textcolor{blue}{a}) = \textcolor{green}{1} \\ \textnormal{Multiplisering: } \qquad & \log_{\textcolor{red}{a}} (\textcolor{blue}{x} \cdot \textcolor{blue}{y})= \log_{\textcolor{red}{a}}(\textcolor{blue}{x}) + \log_{\textcolor{red}{a}}(\textcolor{blue}{y}) \\ \textnormal{Dividering: } \qquad & \log_{\textcolor{red}{a}} \left( \frac{\textcolor{blue}{x}}{\textcolor{blue}{y}} \right)= \log_{\textcolor{red}{a}} (\textcolor{blue}{x}) - \log_{\textcolor{red}{a}} (\textcolor{blue}{y}) \\ \textnormal{Eksponenter: } \qquad & \log_{\textcolor{red}{a}} (\textcolor{blue}{x}^{\textcolor{green}{y}}) = \textcolor{green}{y} \log_{\textcolor{red}{a}} (\textcolor{blue}{x}) \\ \textnormal{Skifte grunntall: } \qquad & \log_{\textcolor{red}{a}}(\textcolor{blue}{x}) = \frac{\log_{\textcolor{green}{b}}(\textcolor{blue}{x})}{\log_{\textcolor{green}{b}}(\textcolor{red}{a})} \end{aligned}$$

der $x > 0$ og $y > 0$.

👍🏼 Ros og ris 👎🏼
🛠️ Meld fra om feil 🛠️
📩 Send inn ønske 📩
Copyright @ 2025 Kunnskapsgnist
Symboler:
★ Utfordring ★
Dypdykk Dypdykk Dypdykk
☰ Metode ☰
Bonus Bonus Bonus
Video Video Video