Trigonometrisk substitusjon med sinus invers:
\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C
Sinus invers substitusjon brukes når nevneren er kvadratroten av noen andregradspolynom.
Trigonometrisk substitusjon med tangens invers:
\int \frac{1}{x^2 + 1} dx = \tan^{-1}(x) + C
Tangens invers substitusjon brukes når nevneren er noen andregradspolynom.
+ Hvordan virker substitusjon med sinus invers?
\int \frac{1}{\sqrt{1-x^2}} dx
Substituerer $\textcolor{red}{u = \sin^{-1}(x)}$, dvs. $x = \sin(u)$. Deriverer for å finne et uttrykk for $dx$:
\begin{aligned} x & = \sin(u) \\ \Rightarrow \quad \frac{dx}{du} & = \cos(u) \qquad | \cdot du \\ \Rightarrow \quad dx & = \cos(u) \; du \end{aligned}
Setter inn:
\int \frac{1}{\sqrt{1-x^2}}dx = \int \frac{\cos(u)}{\sqrt{1 - \sin^2(u) }} du
Husk at $\sin^2(u) + \cos^2(u) = 1$ som gir $\cos^2(u) =.1 – \sin^2(u)$:
\int \frac{1}{\sqrt{1-x^2}}dx = \int \frac{\cos(u)}{\sqrt{\cos^2(u)}} du = \int \frac{\cos(u)}{\cos(u)} du = \int du = u + C
Til sist bytter vi tilbake til $x$ ved å sette $u = \sin^{-1}(x)$:
\int \frac{1}{\sqrt{1-x^2}}dx = \sin^{-1}(x) + C
Og, vips, har vi vist formelen for substitusjon med sinus invers.
+ Hvordan virker substitusjon med tangens invers?
\int \frac{1}{x^2 + 1} dx
Substituerer $\textcolor{red}{u = \tan^{-1}(x)}$, dvs. $x = \tan(u)$. Deriverer tangens for å finne et uttrykk for $dx$:
\begin{aligned} x & = \tan(u) \\ \Rightarrow \quad \frac{dx}{du} & = \tan^2(u) + 1 \qquad | \cdot du \\ \Rightarrow \quad dx & = (\tan^2(u) + 1) \; du \end{aligned}
Setter inn:
\int \frac{1}{x^2 + 1}dx = \int \frac{\tan^2(u) + 1}{\tan^2(u) + 1} du = \int du = u + C
Til sist bytter vi tilbake til $x$ ved å sette $u = \tan^{-1}(x)$:
\int \frac{1}{x^2 + 1}dx = \tan^{-1}(x) + C
Og, vips, har vi vist formelen for substitusjon med tangens invers.
+ Eksempel: $\int \frac{1}{\sqrt{9 – x^2}} dx$
\int \frac{1}{\sqrt{9-x^2}}dx
Først må vi gjøre noe for å få 1 – (uttrykk)2 under kvadratroten:
\sqrt{9 - x^2} = \sqrt{9\left(1 - \frac{x^2}{9}\right)} = \sqrt{9} \cdot \sqrt{1 - \frac{x^2}{3^2}} = 3 \sqrt{1 - \left( \frac{x}{3}\right)^2 }
som gir:
\int \frac{1}{\sqrt{9 - x^2}} dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - \left( \frac{x}{3} \right)^2 }} dx
+ Metode med formel
Vi ønsker å bruke formelen:
\int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C
Substituerer $\textcolor{red}{u} = \textcolor{red}{\frac{x}{3}}$. Deriverer for å finne et uttrykk for $dx$:
\begin{aligned} & \textcolor{red}{\frac{x}{3}} = \textcolor{red}{u} \\ \Rightarrow \quad & \frac{1}{3} = \frac{du}{dx} \qquad | \cdot 3 \; dx \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{3\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{\sqrt{9 - x^2}} dx & = \frac{1}{3} \int \frac{1}{\sqrt{1 - \left( \textcolor{red}{\frac{x}{3}} \right)^2 }} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \frac{1}{3} \int \frac{1}{\sqrt{1 - \textcolor{red}{u}^2}} \cdot \textcolor{blue}{3 du} \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \int \frac{1}{\sqrt{1-u^2}} du \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \sin^{-1}u + C \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \sin^{-1} \left( \frac{x}{3} \right) + C \end{aligned}
+ Metode uten formel
Substituerer $\sin u = \frac{x}{3}$, dvs. $\textcolor{red}{\sin^{-1} \left(\frac{x}{3}\right)} = \textcolor{red}{u}$. Deriverer for å finne et uttrykk for $dx$:
\begin{aligned} & \frac{x}{3} = \sin u \\ \Rightarrow \quad & \frac{1}{3} = \cos u \; \frac{du}{dx} \qquad | \cdot 3 \; dx \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{3\cos u\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{\sqrt{9 - x^2}} dx & = \frac{1}{3} \int \frac{1}{\sqrt{1 - \left( \textcolor{red}{\frac{x}{3}} \right)^2 }} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \frac{1}{3} \int \frac{1}{\sqrt{1 - \textcolor{red}{\sin}^2 \textcolor{red}{u}}} \cdot \textcolor{blue}{3 \cos u \; du} \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \int \frac{1}{\sqrt{\cos^2u}} \cdot \cos u \; du \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \int \frac{1}{\cos u} \cdot \cos u \; du \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \int du \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = u + C \\ \Rightarrow \quad \int \frac{1}{\sqrt{9 - x^2}} dx & = \sin^{-1} \left( \frac{x}{3} \right) + C \end{aligned}
Og, vips, har vi løst integralet.
+ Eksempel: $\int \frac{1}{x^2 + 9} dx$
\int \frac{1}{x^2 + 9}dx
Først må vi gjøre noe for å få (uttrykk)2 + 1 i nevneren:
x^2 + 9 = 9 \left( \frac{x^2}{9} + 1 \right) = 9 \left( \frac{x^2}{3^2} + 1 \right) = 9 \left( \left(\frac{x}{3}\right)^2 + 1 \right)
som gir:
\int \frac{1}{x^2 + 9} dx = \frac{1}{9} \int \frac{1}{\left( \frac{x}{3} \right)^2 + 1} dx
+ Metode med formel
Vi ønsker å bruke formelen:
\int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C
Substituerer $\textcolor{red}{u} = \textcolor{red}{\frac{x}{3}}$. Deriverer for å finne et uttrykk for $dx$:
\begin{aligned} & \textcolor{red}{\frac{x}{3}} = \textcolor{red}{u} \\ \Rightarrow \quad & \frac{1}{3} = \frac{du}{dx} \qquad | \cdot 3 \; dx \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{3\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{x^2 + 9} dx & = \frac{1}{9} \int \frac{1}{\left( \textcolor{red}{\frac{x}{3}} \right)^2 + 1} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{x^2 + 1} dx & = \frac{1}{9} \int \frac{1}{\textcolor{red}{u}^2 + 1} \cdot \textcolor{blue}{3 du} \\ \Rightarrow \quad \int \frac{1}{x^2 + 1} dx & = \frac{1}{3} \int \frac{1}{u^2 + 1} du \\ \Rightarrow \quad \int \frac{1}{x^2 + 1} dx & = \frac{1}{3} \tan^{-1}u + C \\ \Rightarrow \quad \int \frac{1}{x^2 + 1} dx & = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) + C \end{aligned}
+ Metode uten formel
Substituerer $\tan u = \frac{x}{3}$, dvs. $\textcolor{red}{\tan^{-1} \left(\frac{x}{3}\right)} = \textcolor{red}{u}$. Deriverer tangens for å finne et uttrykk for $dx$:
\begin{aligned} & \frac{x}{3} = \tan u \\ \Rightarrow \quad & \frac{1}{3} \frac{dx}{du}= ( 1+ \tan^2 u) \qquad | \cdot 3 \; du \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{3(1 + \tan^2 u)\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{x^2 + 9} dx & = \frac{1}{9} \int \frac{1}{\left( \textcolor{red}{\frac{x}{3}} \right)^2 + 1} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{x^2 + 9} dx & = \frac{1}{9} \int \frac{1}{\textcolor{red}{\tan}^2 \textcolor{red}{u} + 1} \cdot \textcolor{blue}{3 (1 + \tan^2u) du} \\ \Rightarrow \quad \int \frac{1}{x^2 + 9} dx & = \frac{1}{3} \int du \\ \Rightarrow \quad \int \frac{1}{x^2 + 9} dx & = \frac{1}{3} u + C \\ \Rightarrow \quad \int \frac{1}{x^2 + 9} dx & = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) + C \end{aligned}
Og, vips, har vi løst integralet.
+ Eksempel: $\int \frac{1}{x^2 + 2x + 5} dx$
\int \frac{1}{x^2 + 2x + 5}dx
Først må vi gjøre noe for å få (uttrykk)2 + 1 i nevneren:
x^2 + 2x + 5 = x^2 + 2x + 1 + 4 = (x+1)^2 + 4 = 4 \left( \frac{(x+1)^2}{4} + 1 \right) = 4 \left( \left(\frac{x+1}{2}\right)^2 + 1 \right)
som gir:
\int \frac{1}{x^2 + 9} dx = \frac{1}{4} \int \frac{1}{\left( \frac{x+1}{2} \right)^2 + 1} dx
+ Metode med formel
Vi ønsker å bruke formelen:
\int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C
Substituerer $\textcolor{red}{u} = \textcolor{red}{\frac{x+1}{2}}$. Deriverer for å finne et uttrykk for $dx$:
\begin{aligned} & \textcolor{red}{\frac{x+1}{2}} = \textcolor{red}{u} \\ \Rightarrow \quad & \frac{1}{2} = \frac{du}{dx} \qquad | \cdot 2 \; dx \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{2\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{4} \int \frac{1}{\left( \textcolor{red}{\frac{x+1}{2}} \right)^2 + 1} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{4} \int \frac{1}{\textcolor{red}{u}^2 + 1} \cdot \textcolor{blue}{2 \; du} \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} \int \frac{1}{u^2 + 1} du \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} \tan^{-1}u + C \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} \tan^{-1} \left( \frac{x+1}{2} \right) + C \end{aligned}
+ Metode uten formel
Substituerer $\tan u = \frac{x+1}{2}$, dvs. $\textcolor{red}{\tan^{-1} \left(\frac{x+1}{2}\right)} = \textcolor{red}{u}$. Deriverer tangens for å finne et uttrykk for $dx$:
\begin{aligned} & \frac{x+1}{2} = \tan u \\ \Rightarrow \quad & \frac{1}{2} \frac{dx}{du} = ( 1+ \tan^2 u) \qquad | \cdot 2 \; du \\ \Rightarrow \quad & \textcolor{blue}{dx} = \textcolor{blue}{2(1 + \tan^2 u)\; du} \end{aligned}
som gir:
\begin{aligned} \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{4} \int \frac{1}{\left( \textcolor{red}{\frac{x+1}{2}} \right)^2 + 1} \textcolor{blue}{dx} \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{4} \int \frac{1}{\textcolor{red}{\tan}^2 \textcolor{red}{u} + 1} \cdot \textcolor{blue}{2 (1 + \tan^2u) du} \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} \int du \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} u + C \\ \Rightarrow \quad \int \frac{1}{x^2 + 2x + 5} dx & = \frac{1}{2} \tan^{-1} \left( \frac{x+1}{2} \right) + C \end{aligned}
Og, vips, har vi løst integralet.